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Abstract. A new approach is presented to derive the Hamiltonian family of %phﬁaldane—
Shastry model based on the RTT relation and Yangian symmetry. We show that the first members
of the Hamiltonian family are related to the quantum determinant of the transfer rifatrix

1. Introduction

Recently there has been a remarkable success in studying the long-ranged interaction models
by means of various approaches [1-9]. Besides the Calogero—Sutherland (C-S) type of
models [1,2,5-8] the Haldane-Shastry (H-S) model was regarded as the representative
of the spin chain(SU(n)) with long-range interaction [3—6]. The first members of the
Hamiltonian family of the H-S model are given by [3-5].

o, — Z ( ziz,) Py —1) (1.1)

0 ZijZji
r( zizjz
H3 = Z (J : ) (Pijr — 1) (1.2)
igde \ZijZjkZki
and empirically,
Hy o /< 222k >(Pijkl ~1+H, (1.3)
ik \ZijZjkZkiZli
, 1 1 Zi%j 2
Hy=—3Hp ~ 2y (Pij — 1) (1.4)
o7 \ZijZji
where P;; exchange the states on siteand j,
Zij =Zi —Z%j (1.5)
with z; being prime complex number. Following [3-5] we use the notations:
Piji = Pij Pjx + Pjk Pii + Py Pij (1.6)
Piju = P;; Pjx Py + all the cyclic terms foi — j — k — [ .7
[Hn, H,] =0 (m,n < 4) (1.8)
[Hy, 01l =[Hn, 051 =0 (1.9
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where
N
04 = Z I (1.120)
i=1
! . c
05 =3 wifrr (1.11)
ij
andw;; satisfy
w,-j = —wj,- (112)
Wi Wik + Wirwji + wiw;; =1 (1.13)

whose general solution reads

wy = 419 (L.14)
i —Zj

with a special form forN being the sum of the distinct sites:
. i2m
= w’ =exp| — ). 1.15
g=o  w=en(5) (1.15)

The Qf and Q4 form an infinite algebra (Yangian) associated with the fundamental
representations of SW), whose generators atsite are/’. The H-S model and its
properties related to Yangian were systematically discussed in [3-5]. However, how to
derive the Hamiltonian set equations (1.1)—(1.3) based on the RTT relation is left unsolved
[1-8]. As is well known, the integrability in the sense of Yang—Baxter is very important.
The key point consists of the RTT relation:

R(u —o)(T ) Q)T @) = (T) Q) T ) R(u —v) (1.16)

where R (1) satisfies the Yang—Baxter relations afi¢k) is the transfer matrix. Following

the quantum inverse scattering methods [10] tl#(tr) forms a conserved family including

the Hamiltonian that is related to the Bethe ansatz in the diagonalization. However, based
on some long-ranged interaction models [6, 9], we have known that the quantum determinant
DetT (u) may be regarded as the conserved family. An important property of Detis

[DetT (u), T(v)] =0 (1.17)

i.e. commute with the quantum operatdig (v). Because equations (1.1)—(1.3) commute
with the generators of Yangian [3-5]. It follows from the Drinfeld theorem [11, 12] that the
Hamiltonian family equations (1.1)—(1.3) should commute WitkXu). A natural idea is to
think that equations (1.1)—(1.3) may be derived through theTDet. However, as pointed

out in [5], the origin of the Hamiltonian constants of motion in the H-S model is conceptually
rather different from that in the finitd# Bethe model. In a special representation, the
DetT (u) becomes a polynomial im with constant coefficients. To avoid the quantum
determinant generated by the transfer maftix) becoming a triviak-number, we should
find a different approach to generate the Hamiltonian family equations (1.1)—(1.3).

In this paper we would like to set up the connection between the H-S model and RTT
relation. Essentially, this is to bridge ®(u) and Detl' (). To overcome the difficulty
stated above we should extend the new realization of Yangian proposed by Drinfeld [11, 12]
by introducingTo(u) = tr T(#) in the RTT relation. The approach can be viewed as an
extension of [6, 9, 13] where the relation between the quantum determinant and the transfer
matrix is given to determine the higher invariants for the type of C—S models.
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From the expansion df ()
T =) u"T® (1.18)
n=0

whereT©@ = I, in accordance with the RTT relation, the generators of Yangian are related
to 7 and 7@, whereas the tF™ (m > 2) are constrained by the RTT relations with
n > 3 (see below). Therefore one may find sufficierlf @ (m > 2) satisfying the first-
few ordered expansion of RTT. They form a conserved family and do not commute with
Yangian.

It is not difficult to set up the relationship between the quantum determinarif @gt
and tr7 " family, namely, for given t7 ™ satisfying RTT relation we are able to generate
the Hamiltonian equations (1.1)—(1.3).

For simplicity we restricted ourselves to discuss th@)gtase whose transfer matrix is
simply determined by th&-matrix

Ru)=uP +1 (1.19)

where P stands for the 4« 4 matrix representation of the permutation, ahd:) takes the
form

[ Tu@ T ] S o) NS —n g e
T(u)_[Tzl(u) Tzz(u)}_gu T —;” 1T | (1.20)

wherea, b = 1,2, and T;,f) are quantum operators. Substituting equations (1.18), (1.19)
and (1.20) into equation (1.16) we have

[0, T — (10, TG+ T T — 1T = 0 (m,n >0). (1.21)
Defining
A 122
e |
the quantum determinant
DetT (u) = Tia(u)Too(u — 1) — T1o(u) T21(u — 1) (1.23)
[o.¢]
= Z u"C, (1.24)
n=0

can be expressed throug” and 7, (o = +, 3):

Cn = To(n) + % Z Cm,kTo(m) + % Z Cm,s

m+k=n m,k#0 m+k—+s=n k,m#0
X[%(Ték)To(m) _ Tg(k)Tg(m)) _ (T+(k)T£171) + Tik)Tim))] (125)
(k +m + 1!
Congk = -
' (m — Dk!

It is noted thatC,, are, in general, not constants (the explicit examples were given in [6, 9]).
Obviously,

[Cp,C] =0 [C. TS"1 =0 (1.26)
(7", T = [18", €] =0 (1.27)
[T\", TS 40  (m>2). (1.28)
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In the following we shall find thel,” (@ = +, 3,0)(n = 2, 3, 4) satisfying the RTT
relation, then substitute them into equation (1.25) to gendtate = 2, 3, 4) throughC,.

This paper is organized as follows. In section 2 we shall give the RTT relations including
TO(") =tr7™. In section 3 the quantum determinant D&k ) is constructed that will lead
to the Hamiltonian set of the H-S model (1.1)—(1.4).

2. The commutation relations for T.\™ (a = &, 3, 0)

With the 4x 4 R-matrix equation (1.19) and the notions equation (1.22) the RTT relation
equation (1.21) leads to the following independent relations:

[P, T =17 121 = [, T,”] =0 a#0 (2.1)
(73, 101 = 13", 1Y = 21 (2.2)
(1P, 191 =1, 19 = 13V (2.3)
(73", 174" =0 (for anym, n) (2.9)
(17, " = 11" TP =0 (@#0) (2.5)
(757, 7] = (13712 — 17T (2.6)
(12, 1,7] = 20 T? — 1PTD) 2.7)
(7", 131 = 1", 15" (2.8)
[, 1132, T £ 17, 71T = 0 (2.9)
2y 1" TP + 13", Ty"1T3° = 0 (2.10)
T = 1P T + 1 T8 — 1T (2.11)
" =1, T+ @ T - 10T, (2.12)

In comparison with Drinfeld’s theorem [11,12] equations (2.9) and (2.10) are the
consequence of equations (2.11) and (2.12). Actually, on the basis of the relation
[T, Tf™] = [T/, Tl < n,n > 3., = +,3), one can show (see below) that
the set satisfying equations (2.11) and (2.12) satisfy equations (2.9) and (2.10) order by
order.

We emphasized that the constraint relationszfé’?) come from the expansion of RTT
relation that give rise to the new form of the coproduair,,) = >". 7, ® T.,. For the
Y (SL(2)) case we hav@o(z) = (Qo)?, however for Y(gl(2)) it is not the case. In comparison
with the Drinfeld theory [10, 11] the inclusion @f" still preserves the property of mapping
Y(gl(2)) into T provided 7" satisfy equations (2.2)~(2.7).

Whenm = n = 2, taking equations (2.6) and (2.7) into account, equations (2.9) and
(2.10) become

(72112, 121 = P12 — 1P 1)1 (2.13)
(12, (T2, 72N = 7°1? — 1P TP TP, (2.14)

From equations (2.1)—(2.3), (2.13), (2.14) we obtain
A7 (12, TP £ (1,7, 11,7, T27]
=2rP1? - 1PN + (T TP - TP T TV, (2.15)

With the relations for7(” and 7" (the Lie algebra) they form tgl(2)) algebra with the
generators/,(Y and 7 (¢ = =, 3) which can be realized through the operat and
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¢ in equations (1.10) and (1.11) for the Lie algebra2gl The determination ofy?,
given by equations (2.6) and (2.7), is due to the consistence for equations (2.11), (2.12) and
[T, T8 = [T, T/ < n.n > 3).
Obviously, 7Y can be realized through the sp%noperatorsS;’(a = +, 3) where
S& =0 and $? = 103 at theith site, andS;" = S! +iS?, o; are Pauli matrices.S"

(¢ = £, 3) satisfy the followmg relations:

[s*.sf1=0 (2.16)
[S7, 71 = £8i;5;° (2.17)
($H2=0  ($H*=1. (2.18)
By setting
05 = Z S¢ (@=%.3) (2.19)
0Ff = ;Z wi; S 83 (2.20)
Z wi; S;S; (2.21)
where

i =of =01 £iQ® (=01
they are the same as those of equations (1.10) and (1.11), namely,

(1) QO — ZS:E
Y = QS:ZZS?

(2) Ql — Z w,jS S3

T2 =203 = Z wi; S;7S; .

(2.22)

We can verify tha, Y and T052> (¢ = =+, 3) satisfy equations (2.1)—(2.3), (2.13)—(2.15),
i.e. all the Yangian relations. The coproduct can be definedBy = )", Tix ® Ty;.

Whenn > 2, the operatord,(”’ (¢ = =+, 3) can be obtained by using the recurrent
formulae (2.11) and (2.12). In the absence]é?) this is guaranteed by Drinfeld’'s theory
[11,12]. However, in the involusion (ﬁ“o(") the situation becomes a little complicated. As
we emphasized that in order to make the recurrent relations, equations (2.11) and (2.12),
valid for n > 3, the T, and 7,"”’(n > 3) should be restricted by equations (2.6)—(2.10).
The operatoTO(z) plays a basic role since it satisfies equations (2.6) and (2.7) and guarantees
all the relations of RTT fom < 3. In terms of7,? and taking equations (2.11), (2.12)
and the set (2.8)—(2.10) into account mé’) (n > 3) can then be sufficiently determined.

By substitutingTO(”)(n > 2) into (1.25),C, can be obtained. Hence, for the refﬂf&) we
expect to derive the Hamiltonian family for H-S model equations (1.1)—(1.3).

In one word, it is necessary to find suitabi‘é’” which satisfy all the requirements
equations (2.6)—(2.10). When all of tH&" (e = +, 3,0) are ready we can use them to
constructC, that form a conserved family and commute witfi’. Of course,C,, commute
with Yangian, but7,” do not.
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3. The construction of C,,

31.n=2

We list all the independent equations for the RTT relation
(757, T9] = £(1° 1.2 — TP T) (3.1)
(132, 1,7] = 20 T? — 1PTD) (3.2)
(12,12, 1% = 0 '1? — 12171 (3.3)
(12,17, 720 = (1" 12 — 1P 1)1 (3.4)
(7P, 1% =12, 17 = 17 (3.5)
(73, 121 = [1,2, 1Y) = £212. (3.6)

Noting that7.” = tr 7® and
1 1
[P, rP1=0. (3.7
The quantum determinant far= 2 reads:
C, = T0(2> _ %{%Ts(l)Ts(l) + TJ(rl)Til) + Til)TJ(rl)} + %[To(l) + (%Tou))z] (3.8)

WhereTo(z) satisfies equations (3.1) and (3.2).
To solve equations (3.1) and (3.2), we suppose

T3 =Y fiy (P — 1) (3.9)
)
where
Py =25SP+SS; + 578"+ 3 (3.10)

(it is easy to check thaP,-jS;"Sf = S]‘.”SfPU) and f;; are constants to be determined.
By substituting equation (3.9) into equations (3.1) and (3.2), we find the sufficient
solution:

so that
T2 = %Z/(wij)z(Pij - D. (3.12)
ij
Putting 7,” into equation (3.8) and setting
Co=—-2H,+ A, (313)
where
A2 =3T3 + 3T + ) 5+ 3 (3.14)
i,j i
is formed by constants and the lower-order Casimir, one obtains
ZiZj
Hy=  ~(P; =1
0 ZijZji

that is just (1.1).
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32.n=3

We list all the relations
¥ = {17, 12 + 17 110 — 1,V 12) (3.15)
79 =12, 17?] + %(TO(Z) 7" — 1T (3.16)
(72, 191 =0 (3.17)
[TO(Z)’ T3] = [TO<3>, 7?] (¢ =+, 3) (3.18)
(72, 1791 =0 (3.19)
(T2 TP1=112. 171 (@B #0) (3.20)
(7,7, 1) = =1 10 - 197 (3.21)
(1P, 1% = -15° (", 7% =21 (3.22)
(7?79 = 219, (3.23)

The C3 is given by
Cs=T2 + 1" 17 - A 12 + TOT? + TOTP) 4 ¢ (3.24)

We first prove that suppose all the relations foe= 2 are satisfied theff® (@ = +, 3)
determined by equations (3.15) and (3.16) satisfy equations (3.19)—(3.23). As an example
we check [¥, 7?1 = [T?, 7. From equation (3.15) it follows

3 2 2 3 2 2 2 2 2 2
(737, 771 = [157. 721 = (77, 79). 7] = 377, (157, T3]
2 2 1 2 2 1
+2152, TP - A2, 132110 (3.25)

Taking 7”2 = [7?, T"] into account the first term on the RHS of equation (3.25)
becomes
(72, 721, 721 = 3172, 721, (1218 - 1 137)]
which by virtue of equations (2.4)—(2.7) and equations (3.3) and (3.4) is equal to

2 2 1 2 2 2 2 2 1 1
AT T + 37 (17 1T - ST, 1), TP T
Using Jacobi identity, 1", 7,”] = 0 and7? = 1[13?, T{"] one obtains
2 2 1 2 2
(757, 7371, 771 = 21,7, 721,
Hence one has
2 2 2 2 2 1 2 2 2 2 2 1
(72, 1791, 121 = 312, 12100 + 3152, (17 . 721 - 3132, 12113

that leads ta(3.25) = 0. Similarly one can prove that equations (3.19)—(3.23) hold. This
conclusion is nothing but the direct check of Drinfelds theorem in the case. Because
there is not the explicit statement in [11,12] in the presencé‘o(fw)f(To(")(n > 2) are not
Casimir), the direct check here does make sense itself.

Now for givenT,;? we should find7,> such that it satisfies equations (3.17) and (3.18)
providedT® (« = +, 3) are given by equations (3.15) and (3.16). We shall prove that the
form of

/
To(s) = _%BZ wijwjkwk,-(P,-jk - 1) - %Tél)T()(z) (Tél) = C]_) (326)
i,j.k
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satisfies equations (3.17) and (3.18).
If equation (3.26) holds, by substituting it into equation (3.24) one obtains

C3=—gHs+ As (3.27)

where A3 = C,. The Hj is exactly the Hamiltonian equation (1.2).
Now let us verify that equation (3.17) is satisfied, for example, [ 7] = 0.
Equations (3.12) can be recasted to

Ty? = 3> (P — 1) — 2H,
iJ

and

/
H3 = %Z (wijwjrwe; 4+ wij + wjx + wi) (Pijx — 1)
ik

respectively. In terms of equations (3.26) and (3.2{3‘5’3 can be rewritten in the form:

3 / 2
Ty = &> wij(Pij — 1) — §Hs — 3T,V T, (3.28)
i,j.k

In view of T." = C3, we obtain the simplified form of the LHS of equation (3.17):

/ / /!
(1,7, 737 = 112[2 P, Y wi,-Pijk} - 3[2 Pin. Ha}
I,m I,m

i,j.k
+101[Z’sz, Téﬂ - ;[Hz, Z/wijPijk]
I,m i,j.k
+C1[H, Ty + §[ Ha, Hs). (3.29)

Let us compute the RHS of the above expression.
Using

! 2 '
3 Py - =5+ 3@+ TOTR) - 13
i,j h

/ 1 2 1 2 1 2
LY (P =D = I+ T 17
i,j.k

and equation (1.8) and the relationship betw@é%’l and Hy, it is not difficult to prove that
the last five terms on the RHS of equation (3.29) vanish.

Next we only need to prove that the first term on the RHS of equation (3.29) is equal
to zero. On account of

PPy = 5(Pij + Pi + P — 1) + S3(ST S, — 878 + S (S8 — S8
3¢+ ¢ - ¢t
+S8;(S; Sj -5 SJ. )
we obtain
12 ’ / —
Z w,-jP,-jk = 32 w,~_,~Pl~ijk = 62 (w,-j + wjk + wk,‘)S?SjJrSk .
i,j.k i,j.k i,j.k
Hence

é[zlplm» Z,wijpijk:|
I,m

i,j.k
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= 4{ Z/ [(Pim + Pjm + Prm), (wij + wji + wki)S,'BSfS;:]
i,j,k,m
/ —
+Z [(Pj + Pjx + Pri), (wij + wj + wki)S?SfSk ]}
i,j.k
The direct calculation shows that the first commutation vanishes because
!
Z (wij + wjr + wii)
i,j,k,m
X(=S;5 S, S S + 8788, S5 + 2878 S3S, — 253838, 5;) =0
where equations (2.16)—(2.182 have been used. Similarly, the second commutator also
vanishes, we thus verify thaf{”, 7.”] = 0.

Next let us prove equation (3.18). As an example, let us consider, i.e. one needs
to prove

3 2 2 3
[TO( )’ T?’( )] — [TO( )’ Tg( )]_ (330)
On account of
3 2 2 2) (1 1) (2
1Y =12, 191+ 112 1" — 1,°1,7) (3.31)

and substituting equations (3.26) and (3.31) into equation (3.30), then equation (3.30)
becomes

—118|:Z/wijwjkwki(Pijk -1, T3(2):| =[132. (12, T?]]. (3.32)
i,j,k

Substituting equations (3.1), (3.5) and (3.6) into the RHS of equation (3.32) successively it
becomes:

RHS of (3.32 = [TV, [T?, 7?7 + 21PT? — T727?) +- 1@, 117D

+[12, TP, (3.33)
Noting that
(72, 7% = > wijwSP2SESE + 575, + 8755 — 3> (wi)?S? (3.34)
i,j,k i,j
which leads to
(r?, @, ri’1=0 (3.35)

hence, the first term of equation (3.33) vanishes. Further, using
(AP + 1210 + 121®), 1,7
=112, 12110 + 12, 12118 + 20 P T — TP TP

we obtain

12, [T, T2 = G210 + 1PTP + TP 1), 1] (3.36)

Making a comparison between equation (3.32) and equation (3.36) and taking the
expression forZ’i’j’k w;;(P; jk — 1) into account we conclude that equation (3.18) is
identified with the requirement:
/
[(%82 Wi Wik Wi + % Z w,»j)Pl-jk’ Tg(z)] =0 (3.37)

i,j.k i,j.k
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that is nothing but fis, T:?] = 0. It was verified in [3,5] for® ~ 0\®. Of course,
(3.37) can also be directly checked. In the same manner, one finds that equation (3.18)
holds fore = +, 3.

The other relations for equations (3.19) and (3.20) can be verified in a similar manner.

33.n=4

The RTT relations are given by
1%, 771 =0 (3.38)
[To(4)’ 7] = [TO<2), 7.9 (@ =+, 3) (3.39)
7. 11 =0 (3.40)
1,2, T = [T, T?] (@ ==4,3m=273) (3.41)
(7, T =0 (3.42)

together with equations (2.11) and (2.12) with= 3. Using equations (2.2)—(2.10) for
n,m < 3, we have

(12, 70 = £ 1L — T T®) (3.43)
(752, T3 = 2001 —1T®)  (m=3,4) (3.44)
(r® 1 =™, 19 = /" (3.45)
[T®, 7] = £21.™ [\, 7°] = +21™ (3.46)
(12, 78 = (19, T?]. (3:47)

The relations shown by equations (3.43)—(3.47) are not concerned I&ﬁh They
can be checked by making use of equations (2.11) and (2.12) and the knowledge of
sections 3.1 and 3.2. Therefore the key relations conceﬂﬁﬁgthat have to be checked
are equations (3.38)—(3.42).
Equation (1.25) takes the form:

Ca=T" + 3112 +13C3 - Cp) + (1P 1° — 1) — (7P 1® + 70T )
2 2
T = @) - 20PT1? + 12T (3.48)
We should find a suitabl@o(“) satisfying equations (3.38)—(3.42). The direct check is
very difficult. Since the point of this paper is to give a new interpretation of the H-S model
from the point of view of RTT relation, we can admit the derived results in [3-5] that will

simplify the following calculation a lot. Using the results far= 2 andn = 3 after a
complicated calculation, equation (3.48) becomes

4 / ’ 2.2
Ca=Ty" -1 Z wij Wik Pim Pi — 3 Z Wi Wen Pim Pite — 3(T3?)

i,j,km i,j.k,m
/ / 2 1 3
i,j,k i,j,k

whereA = ¥ — 17 + ¢, — 3 andB = 1Y, (wij)® + 1(3C3 — C2) — 1C1(C3 — Ca).
We propose thaT\¥ takes the form:

4 !
To( ) = —3% Z (Wi j W Wi Wi + D (Pijem — 1)
ik
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+;11 Z (wijwjx Pk Pjm — %wijwkaiijk)
i,j.k.m
’ ’
=Y 13N = 1Dwijwy + Swip? Py — ATy — T30 1Y
i,j.k
" 2 "

—1H, - 3(1®)" — LH, (3.50)
where

A — A 1 N 1T(1)—|—C 5

- T2 20 74
2
" / iZj
H= =23 (27 o
[,j Z[ijl
H, = —1H.
If equation (3.50) is true, then we have:

Cy = %H4 + Ay (351)
whereA, = 2)°; (w;))*—§NY; ;(wij)?+3(3C3—Ca)—3C1(C3—C2) which is conserved,
and H, takes the same form as that given in equation (1.3). Equation (3.13) means that

Co=—-2H,+ A,

2
=12 — 3G + VTS + TOTE ) + Y1t + L))

(3.52)

Therefore it holds

[Ha T,71 =0 (3.53)
and combining equation (3.49) it leads to:

[Ca, T,P] = 0. (3.54)
Similarly, after lengthy calculations we can check for g

[C,, T"] =0 (m,n =2,3,4) (3.55)
hence

[C,, T™] =0 (m,n=2,3,4). (3.56)

On the basis of knowledge of [3-5] in equations (1.8) and (1.9) we shall give the
verification of equations (3.38)—(3.42) for the proposﬁﬁ) at the same level of the
validity discussed in [3]. Because the calculations are lengthy we only give a sketch of the
computation.

3.3.1. The verification of equation (3.38)Substituting {4, TO(Z)] into equation (3.48) and
using equations (3.21), (3.1) and (3.2) we have:

(139, 121 — (1P P 1P — P71 + 1P (PO - 1)
+T£1)(T53(3) TJ(rl) _ T3(1) TJ(F3)) + %T3(2)(T12) Til) _ Til) T£2))
+1@@r® - 1P1 1P + 1P P1? - 1P 7Y)
1@ P1? — 1P + 1P @ PT® - TP TP)
Ha2r® - 1P r?) = 0.
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By a straightforward calculation on account of equations (2.1)—(2.12) fer 2 we find
that the parenthesis in the above relation is equal to zero, thus one obtains:

4 2
(75", T3?] = 0.

3.3.2. The verification of equation (3.39)From equations (3.54) and (3.46) it follows

149, 7Y 4 312, 721+ 210 72 = 30 72170 — AT 7%
TP TR (1 TV 4 TP T+ 4 T
ST, 1) - 3, T - 3P, 1)
~r®, 12112 =0. (3.57)

Using equations (2.1)-(2.12) for < 3 andn = 2, after straightforward calculation
equation (3.57) becomes:

& 2 Drpr@ @3 D@ @3 Drp@ @3
(130, 101+ 3102 70— 3, 70 - S, 7
O, 104 112, 1) ~0 359

On the other hand, it holds

2 4 2 2 3 1 2 3
(752, 70 = 1,7, 357, 720 = 37571757, T2

2
1 2 3 2 3 1 1 2 3
=71?, 1O+ 1212, TV] - 1P [12, T
2 2 3
+3[132, 1152, T2, (3.59)

Using equations (3.42) and (3.44), equation (3.59) becomes:
7,2, 177 = 7P112, 121 + (12, 0] - A1 P12, T2 + A1, T2, (3.60)
Comparing equation (3.60) with equation (3.58) we obtain

(72, 179 = 1", 7). (3.61)
In a similar manner we can prove:

(12, 7% = 1, T?] (3.62)
7, T3(4)] —[T?, T3(2)]. (3.63)

3.3.3. The verification of equation (3.40)From equations (3.24) and (3.53) it follows
(7,7, 1,91 = 00 115°, 121 + T P11°, TP + 1011, T2]. (3.64)
Using equations (3.38), (3.62), (3.63) and (3.44)Ado& 4, equation (3.64) becomes:

(137, 1521 = 211 + 2rP7® + (17, 1O11Y — 211
1) (4 (L 4
—2r1P7® + T[T, T
=110 - V1 =0, (3.65)
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3.3.4. The verification of equation (3.41) far = 3. By virtue of equations (3.24) and
(3.54) we obtain:
3 4 1 4 2 1 2 4 1 2 4 1 4 2
(757, 7% = 31757 TN 5™ + 3130157, 130 + 101, 1] + (120, T 7
1 2 4
T 1)
4 2 1 2 4 1 2 4 4 2
=177 + 3001?10 + TV TP 1) - T T
1 2 4
P11, (3.66)

where [I'?, T] = 0 has been used (this relation can be checked).
On the other hand,

4 3 4 2 2 2 1 D2
(77, 11 = (15", 50757 T2 + T T — 1,7 12)]

1 4 2 4 2 1 2 4 4) (2
=17 1P+ 101 + I n? 1 - 101

I ?, 1 (3.67)
where [T<4), Tf)] = [TO(Z), Tf)] has been used, which can be directly checked so that

(72, 79— 1, 79 = T[T, 7¥) — T[T, T2, (3.68)
Because of equations (3.38) and (3.47) one has:

72, 7 = 1, 7). (3.69)
In a similar way, we can prove:

(72, 19 = 1, 9] (3.70)

(752, 3% = [13", 1321 (3.71)

Finally, Equation (3.42) can be easily proved by using equation (3.48). Therefore
it has been verified that the proposé‘éf) satisfies all the requirements by the relations
equations (3.38)—(3.42). Such]é“) gives rise to

Cs= 3Hs+ A4 (3.72)
where A, commutes with the Yangian and ¢y does at the level in [3].

4. Conclusion

As was pointed out in [3, 5], the Hamiltonian set of the H-S model (1.1)—(1.4) possesses
Yangian symmetry. In the above discussion we have shown that th% dpamiltonian

family can be derived from the RTT relation through the operaTé’f&(Z < n < 4), namely,

the H,(n < 4) are related to the quantum determinant of the transfer m@lyixThe set

C, forms a conserved family, so do&s”. They commute with each othef;”’ do not
commute with the Yangian, but they are related to the Bethe ansatz approach following the
guantum inverse scattering methods in the diagonalization.

We start from equations (1.19) and (1.16) to find thig (» < 4) which are not
constants, because thg" cannot be expressed by tig and Q¢ (« = =+, 3) themselves.
Rather, they are expressed in terms of the ‘more fundamental’ opefgtavhich form the
Yangian. By virtue of equation (1.2%), are determined by"o(”) and the Yangian operators
TV, TP (a = +,3). The Ty is constrained by the consistence between equations (2.11)

and (2.12) forn = 3 and equations (2.1)—(2.7). With su@y® the higher ordered;"
(2 < n < 4) can be determined by satisfying equations (2.4)—(2.8). This process is quite
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like that made in discussing the long-ranged interaction model in [9]. With the obtained
To(”) the setC, can be found. The Hamiltonian family of the H-S model is thus formed

by C,. Of course, the solutions foTé”) are sufficient. This approach may be viewed as
the generalization of the idea presented in [6]. It is general and dependent on the particular
realization of7,°. It is expected that new candidates will be found, then new models may
be constructed.
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