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Abstract. A new approach is presented to derive the Hamiltonian family of spin-1
2 Haldane–

Shastry model based on the RTT relation and Yangian symmetry. We show that the first members
of the Hamiltonian family are related to the quantum determinant of the transfer matrixT .

1. Introduction

Recently there has been a remarkable success in studying the long-ranged interaction models
by means of various approaches [1–9]. Besides the Calogero–Sutherland (C–S) type of
models [1, 2, 5–8] the Haldane–Shastry (H–S) model was regarded as the representative
of the spin chain(SU(n)) with long-range interaction [3–6]. The first members of the
Hamiltonian family of the H–S model are given by [3–5].

H2 =
∑′

i,j

(
zizj

zij zji

)
(Pij − 1) (1.1)

H3 =
∑′

i,j,k

(
zizj zk

zij zjkzki

)
(Pijk − 1) (1.2)

and empirically,

H4 =
∑′

ijkl

(
zizj zkzl

zij zjkzklzli

)
(Pijkl − 1)+H ′

4 (1.3)

H
′
4 = −

1

3
H2− 2

∑′

i,j

(
zizj

zij zji

)2

(Pij − 1) (1.4)

wherePij exchange the states on sitesi andj ,

zij = zi − zj (1.5)

with zj being prime complex number. Following [3–5] we use the notations:

Pijk = PijPjk + PjkPki + PkiPij (1.6)

Pijkl = PijPjkPkl + all the cyclic terms fori → j → k→ l (1.7)

[Hm,Hn] = 0 (m, n 6 4) (1.8)

[Hm,Q
a
1] = [Hm,Q

a
2] = 0 (1.9)
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where

Qa
0 =

N∑
i=1

I ai (1.10)

Qa
1 = 1

2

∑′

i,j

wijf
abcI bi I

c
j (1.11)

andwij satisfy

wij = −wji (1.12)

wijwik + wjkwji + wkiwij = 1 (1.13)

whose general solution reads

wij = zi + zj
zi − zj (1.14)

with a special form forN being the sum of the distinct sites:

zj = ωj ω = exp

(
i2π

N

)
. (1.15)

The Qa
0 andQa

1 form an infinite algebra (Yangian) associated with the fundamental
representations of SU(n), whose generators ati-site are I ai . The H–S model and its
properties related to Yangian were systematically discussed in [3–5]. However, how to
derive the Hamiltonian set equations (1.1)–(1.3) based on the RTT relation is left unsolved
[1–8]. As is well known, the integrability in the sense of Yang–Baxter is very important.
The key point consists of the RTT relation:

Ř(u− v)(T (u)
⊗

T (v)) = (T (v)
⊗

T (u))Ř(u− v) (1.16)

whereŘ(u) satisfies the Yang–Baxter relations andT (u) is the transfer matrix. Following
the quantum inverse scattering methods [10] the trT (u) forms a conserved family including
the Hamiltonian that is related to the Bethe ansatz in the diagonalization. However, based
on some long-ranged interaction models [6, 9], we have known that the quantum determinant
DetT (u) may be regarded as the conserved family. An important property of DetT (u) is

[DetT (u), T (v)] = 0 (1.17)

i.e. commute with the quantum operatorsTab(v). Because equations (1.1)–(1.3) commute
with the generators of Yangian [3–5]. It follows from the Drinfeld theorem [11, 12] that the
Hamiltonian family equations (1.1)–(1.3) should commute withTab(u). A natural idea is to
think that equations (1.1)–(1.3) may be derived through the DetT (u). However, as pointed
out in [5], the origin of the Hamiltonian constants of motion in the H–S model is conceptually
rather different from that in the finite-N Bethe model. In a special representation, the
DetT (u) becomes a polynomial inu with constant coefficients. To avoid the quantum
determinant generated by the transfer matrixT (u) becoming a trivialc-number, we should
find a different approach to generate the Hamiltonian family equations (1.1)–(1.3).

In this paper we would like to set up the connection between the H–S model and RTT
relation. Essentially, this is to bridge trT (u) and DetT (u). To overcome the difficulty
stated above we should extend the new realization of Yangian proposed by Drinfeld [11, 12]
by introducingT0(u) = tr T (u) in the RTT relation. The approach can be viewed as an
extension of [6, 9, 13] where the relation between the quantum determinant and the transfer
matrix is given to determine the higher invariants for the type of C–S models.
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From the expansion ofT (u)

T (u) =
∞∑
n=0

u−nT (n) (1.18)

whereT (0) = I , in accordance with the RTT relation, the generators of Yangian are related
to T (1) and T (2), whereas the trT (m)(m > 2) are constrained by the RTT relations with
n > 3 (see below). Therefore one may find sufficient trT (m) (m > 2) satisfying the first-
few ordered expansion of RTT. They form a conserved family and do not commute with
Yangian.

It is not difficult to set up the relationship between the quantum determinant DetT (u)

and trT (m) family, namely, for given trT (m) satisfying RTT relation we are able to generate
the Hamiltonian equations (1.1)–(1.3).

For simplicity we restricted ourselves to discuss the gl(2) case whose transfer matrix is
simply determined by theR-matrix

Ř(u) = uP + I (1.19)

whereP stands for the 4× 4 matrix representation of the permutation, andT (u) takes the
form

T (u) =
[
T11(u) T12(u)

T21(u) T22(u)

]
=
∞∑
n=0

u−nT (n) =
∞∑
n=0

u−n‖T (n)ab ‖ (1.20)

wherea, b = 1, 2, andT (n)ab are quantum operators. Substituting equations (1.18), (1.19)
and (1.20) into equation (1.16) we have

[T (n+1)
bc , T

(m)
ad ] − [T (n)bc , T

(m+1)
ad ] + T (n)ac T

(m)
bd − T (m)ac T

(n)
bd = 0 (m, n > 0). (1.21)

Defining

T
(n)

0 = tr T (n) = T (n)11 + T (n)22 T
(n)

3 = T (n)11 − T (n)22

T
(n)
+ = T (n)12 T

(n)
− = T (n)21

(1.22)

the quantum determinant

DetT (u) = T11(u)T22(u− 1)− T12(u)T21(u− 1) (1.23)

=
∞∑
n=0

u−nCn (1.24)

can be expressed throughT (n)0 andT (m)α (α = ±, 3):

Cn = T (n)0 + 1
2

∑
m+k=n m,k 6=0

Cm,kT
(m)

0 + 1
2

∑
m+k+s=n k,m6=0

Cm,s

×[ 1
2(T

(k)

0 T
(m)

0 − T (k)3 T
(m)

3 )− (T (k)+ T
(m)
− + T (k)− T

(m)
+ )]

Cm,k = (k +m+ 1)!

(m− 1)!k!
.

(1.25)

It is noted thatCn are, in general, not constants (the explicit examples were given in [6, 9]).
Obviously,

[Cm,Cn] = 0 [Cm, T
(m)
ab ] = 0 (1.26)

[T (m)0 , T
(n)

0 ] = [T (m)0 , Cn] = 0 (1.27)

[T (n)0 , T
(m)
ab ] 6= 0 (m > 2). (1.28)
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In the following we shall find theT (n)α (α = ±, 3, 0)(n = 2, 3, 4) satisfying the RTT
relation, then substitute them into equation (1.25) to generateHn(n = 2, 3, 4) throughCn.

This paper is organized as follows. In section 2 we shall give the RTT relations including
T
(n)

0 = tr T (n). In section 3 the quantum determinant DetT (q) is constructed that will lead
to the Hamiltonian set of the H–S model (1.1)–(1.4).

2. The commutation relations forT (m)α (α = ±, 3, 0)

With the 4× 4 Ř-matrix equation (1.19) and the notions equation (1.22) the RTT relation
equation (1.21) leads to the following independent relations:

[T (1)α , T (1)α ] = [T (1)α , T (2)α ] = [T (2)α , T (2)α ] = 0 α 6= 0 (2.1)

[T (1)3 , T
(k)
± ] = [T (k)3 , T

(1)
± ] = ±2T (k)± (2.2)

[T (1)+ , T
(k)
− ] = [T (k)+ , T

(1)
− ] = T (k)3 (2.3)

[T (n)0 , T
(m)

0 ] = 0 (for anym, n) (2.4)

[T (1)0 , T (n)α ] = [T (n)0 , T (1)α ] = 0 (α 6= 0) (2.5)

[T (2)0 , T
(2)
± ] = ±(T (1)3 T

(2)
± − T (2)3 T

(1)
± ) (2.6)

[T (2)0 , T
(2)

3 ] = 2(T (1)+ T
(2)
− − T (2)+ T

(1)
− ) (2.7)

[T (m)α , T
(n)

0 ] = [T (n)α , T
(m)

0 ] (2.8)

[T (m)± , [T (2)3 , T
(n)
± ]] ± [T (m)± , T

(n)

0 ]T (1)± = 0 (2.9)

2[T (m)3 , [T (n)+ , T
(2)
− ]] + [T (m)3 , T

(n)

0 ]T (1)3 = 0 (2.10)

T
(n+1)
± = 1

2{±[T (2)3 , T
(n)
± ] + T (n)0 T

(1)
± − T (1)0 T

(n)
± } (2.11)

T
(n+1)

3 = [T (n)+ , T
(n)
− ] + 1

2(T
(n)

0 T
(1)

3 − T (1)0 T
(n)

3 ). (2.12)

In comparison with Drinfeld’s theorem [11, 12] equations (2.9) and (2.10) are the
consequence of equations (2.11) and (2.12). Actually, on the basis of the relation
[T (n)α , T

(m)
β ] = [T (m)α , T

(n)
β ](m < n, n > 3, α, β = ±, 3), one can show (see below) that

the set satisfying equations (2.11) and (2.12) satisfy equations (2.9) and (2.10) order by
order.

We emphasized that the constraint relations forT
(m)

0 come from the expansion of RTT
relation that give rise to the new form of the coproduct4(Tab) =

∑
c Tac ⊗ Tcb. For the

Y(SL(2)) case we haveT (2)0 = (Q0)
2, however for Y(gl(2)) it is not the case. In comparison

with the Drinfeld theory [10, 11] the inclusion ofT (m)0 still preserves the property of mapping
Y(gl(2)) into T (n)ab providedT (m)0 satisfy equations (2.2)–(2.7).

Whenm = n = 2, taking equations (2.6) and (2.7) into account, equations (2.9) and
(2.10) become

[T (2)± , [T (2)3 , T
(2)
± ]] = (T (1)3 T

(2)
± − T (2)3 T

(1)
± )T

(1)
± (2.13)

[T (2)3 , [T (2)+ , T
(2)
− ]] = (T (1)+ T

(2)
− − T (2)+ T

(1)
− )T

(1)
3 . (2.14)

From equations (2.1)–(2.3), (2.13), (2.14) we obtain

2[T (2)± , [T (2)+ , T
(2)
− ]] ± [T (2)3 , [T (2)3 , T

(2)
± ]]

= 2(T (1)+ T
(2)
− − T (2)+ T

(1)
− )T

(1)
± ± (T (1)3 T

(2)
± − T (2)3 T

(1)
± )T

(1)
3 . (2.15)

With the relations forT (1)± andT (1)3 (the Lie algebra) they form Y(gl(2)) algebra with the
generatorsT (1)α andT (2)α (α = ±, 3) which can be realized through the operatorsQa

0 and
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Qa
1 in equations (1.10) and (1.11) for the Lie algebra gl(2). The determination ofT (2)0 ,

given by equations (2.6) and (2.7), is due to the consistence for equations (2.11), (2.12) and
[T (n)α , T

(m)
β ] = [T (n)β , T (m)α ](m < n, n > 3).

Obviously, T (1)α can be realized through the spin-1
2 operatorsSαi (α = ±, 3) where

S±i = σ±i and S3
i = 1

2σ
3
i at the ith site, andS±i = S1

i ± iS2
i , σi are Pauli matrices.Sαi

(α = ±, 3) satisfy the following relations:

[Sαi , S
β

j ] = 0 (2.16)

[S3
i , S

±
j ] = ±δijS±i (2.17)

(S±i )
2 = 0 (S3

i )
2 = 1

4. (2.18)

By setting

Qα
0 =

∑
i

Sαi (α = ±, 3) (2.19)

Q±1 = ∓
∑′

i,j

wijS
±
i S

3
j (2.20)

Q3
1 =

1

2

∑′

i,j

wijS
+
i S
−
j (2.21)

where

T
(l+1)
± = Q±l = Q1

l ± iQ(2)
l (l = 0, 1)

they are the same as those of equations (1.10) and (1.11), namely,

T
(1)
± = Q±0 =

∑
i

S±i

T
(1)

3 = Q3
0 = 2

∑
i

S3
i

T
(2)
± = Q±1 = ∓

∑′

i,j

wijS
±
i S

3
j

T
(2)

3 = 2Q3
1 =

∑′

i,j

wijS
+
i S
−
j .

(2.22)

We can verify thatT (1)α andT (2)α (α = ±, 3) satisfy equations (2.1)–(2.3), (2.13)–(2.15),
i.e. all the Yangian relations. The coproduct can be defined by4Tij =

∑
k Tik ⊗ Tkj .

When n > 2, the operatorsT (n)α (α = ±, 3) can be obtained by using the recurrent
formulae (2.11) and (2.12). In the absence ofT

(2)
0 this is guaranteed by Drinfeld’s theory

[11, 12]. However, in the involusion ofT (n)0 the situation becomes a little complicated. As
we emphasized that in order to make the recurrent relations, equations (2.11) and (2.12),
valid for n > 3, theT (2)0 and T (n)0 (n > 3) should be restricted by equations (2.6)–(2.10).
The operatorT (2)0 plays a basic role since it satisfies equations (2.6) and (2.7) and guarantees
all the relations of RTT forn 6 3. In terms ofT (2)0 and taking equations (2.11), (2.12)
and the set (2.8)–(2.10) into account theT (n)0 (n > 3) can then be sufficiently determined.
By substitutingT (n)0 (n > 2) into (1.25),Cn can be obtained. Hence, for the readyT (2)0 we
expect to derive the Hamiltonian family for H–S model equations (1.1)–(1.3).

In one word, it is necessary to find suitableT (n)0 which satisfy all the requirements
equations (2.6)–(2.10). When all of theT (n)α (α = ±, 3, 0) are ready we can use them to
constructCn that form a conserved family and commute withT (n)0 . Of course,Cn commute
with Yangian, butT (n)0 do not.
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3. The construction ofCn

3.1. n = 2

We list all the independent equations for the RTT relation

[T (2)0 , T
(2)
± ] = ±(T (1)3 T

(2)
± − T (2)3 T

(1)
± ) (3.1)

[T (2)0 , T
(2)

3 ] = 2(T (1)+ T
(2)
− − T (2)+ T

(1)
− ) (3.2)

[T (2)3 , [T (2)+ , T
(2)
− ]] = (T (1)+ T

(2)
− − T (2)+ T

(1)
− )T

(1)
3 (3.3)

[T (2)± , [T (2)3 , T
(2)
± ]] = (T (1)3 T

(2)
± − T (2)3 T

(1)
± )T

(1)
± (3.4)

[T (1)+ , T
(2)
− ] = [T (2)+ , T

(1)
− ] = T (2)3 (3.5)

[T (1)3 , T
(2)
± ] = [T (2)3 , T

(1)
± ] = ±2T (2)± . (3.6)

Noting thatT (1)0 ≡ tr T (1) and

[T (1)0 , T
(1)
ab ] = 0. (3.7)

The quantum determinant forn = 2 reads:

C2 = T (2)0 − 1
2{ 12T (1)3 T

(1)
3 + T (1)+ T

(1)
− + T (1)− T

(1)
+ } + 1

2[T (1)0 + ( 1
2T

(1)
0 )2] (3.8)

whereT (2)0 satisfies equations (3.1) and (3.2).
To solve equations (3.1) and (3.2), we suppose

T
(2)

0 =
∑′

i,j

fij (Pij − 1) (3.9)

where

Pij = 2S3
i S

3
j + S+i S−j + S−i S+j + 1

2 (3.10)

(it is easy to check thatPijSαi S
β

j = Sαj Sβi Pij ) andfij are constants to be determined.
By substituting equation (3.9) into equations (3.1) and (3.2), we find the sufficient

solution:

fij = 1
2(wij )

2 (3.11)

so that

T
(2)

0 = 1
2

∑′

i,j

(wij )
2(Pij − 1). (3.12)

PuttingT (2)0 into equation (3.8) and setting

C2 = −2H2+ A2 (3.13)

where

A2 = 1
2(T

(1)
0 + 1

2(T
(1)

0 )2)+
∑
i,j

1
4 +

∑
i

1
2 (3.14)

is formed by constants and the lower-order Casimir, one obtains

H2 =
∑′

i,j

zizj

zij zji
(Pij − 1)

that is just (1.1).
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3.2. n = 3

We list all the relations

T
(3)
± = 1

2{±[T (2)3 , T
(2)
± ] + T (2)0 T

(1)
± − T (1)0 T

(2)
± } (3.15)

T
(3)

3 = [T (2)+ , T
(2)
− ] + 1

2
(T

(2)
0 T

(1)
3 − T (1)0 T

(2)
3 ) (3.16)

[T (3)0 , T
(2)

0 ] = 0 (3.17)

[T (2)0 , T (3)α ] = [T (3)0 , T (2)α ] (α = ±, 3) (3.18)

[T (2)α , T (3)α ] = 0 (3.19)

[T (2)α , T
(3)
β ] = [T (3)α , T

(2)
β ] (α, β 6= 0) (3.20)

[T (2)0 , T
(3)
± ] = ±(T (1)3 T

(3)
± − T (3)3 T

(1)
± ) (3.21)

[T (1)− , T
(3)
+ ] = −T (3)3 [T (1)3 , T

(3)
+ ] = 2T (3)+ (3.22)

[T (1)− , T
(3)

3 ] = 2T (3)− . (3.23)

TheC3 is given by

C3 = T (3)0 + 1
2T

(1)
0 T

(2)
0 − { 12T (1)3 T

(2)
3 + T (1)+ T

(2)
− + T (1)− T

(2)
+ } + C2. (3.24)

We first prove that suppose all the relations forn = 2 are satisfied thenT (3)α (α = ±, 3)
determined by equations (3.15) and (3.16) satisfy equations (3.19)–(3.23). As an example
we check [T (3)3 , T

(2)
+ ] = [T (2)3 , T

(3)
+ ]. From equation (3.15) it follows

[T (3)3 , T
(2)
+ ] − [T (2)3 , T

(3)
+ ] = [[T (2)+ , T

(2)
− ], T (2)+ ] − 1

2[T (2)3 , [T (2)3 , T
(2)
+ ]]

+ 1
2[T (2)0 , T

(2)
+ ]T (1)3 − 1

2[T (2)3 , T
(2)

0 ]T (1)+ . (3.25)

Taking T (2)+ = 1
2[T (2)3 , T

(1)
+ ] into account the first term on the RHS of equation (3.25)

becomes

[[T (2)+ , T
(2)
− ], T (2)+ ] = 1

2[[T (2)+ , T
(2)
− ], (T (2)3 T

(1)
+ − T (1)+ T

(2)
3 )]

which by virtue of equations (2.4)–(2.7) and equations (3.3) and (3.4) is equal to

1
2[T (2)3 , T

(2)
0 ]T (1)+ + 1

2[T (2)3 , [T (2)3 , T
(2)
+ ]] − 1

4[[T (2)0 , T
(2)

3 ], T (1)+ ]T (1)3 .

Using Jacobi identity, [T (1)+ , T
(2)

0 ] = 0 andT (2)+ = 1
2[T (2)3 , T

(1)
+ ] one obtains

[[T (2)0 , T
(2)

3 ], T (1)+ ] = 2[T (2)0 , T
(2)
+ ].

Hence one has

[[T (2)+ , T
(2)
− ], T (2)+ ] = 1

2[T (2)3 , T
(2)

0 ]T (1)+ + 1
2[T (2)3 , [T (2)3 , T

(2)
+ ]] − 1

2[T (2)0 , T
(2)
+ ]T (1)3

that leads to(3.25) = 0. Similarly one can prove that equations (3.19)–(3.23) hold. This
conclusion is nothing but the direct check of Drinfelds theorem in the casen = 3. Because
there is not the explicit statement in [11, 12] in the presence ofT

(n)

0 (T
(n)

0 (n > 2) are not
Casimir), the direct check here does make sense itself.

Now for givenT (2)0 we should findT (3)0 such that it satisfies equations (3.17) and (3.18)
providedT (3)α (α = ±, 3) are given by equations (3.15) and (3.16). We shall prove that the
form of

T
(3)

0 = − 1
18

∑′

i,j,k

wijwjkwki(Pijk − 1)− 1
2T

(1)
0 T

(2)
0 (T

(1)
0 = C1) (3.26)
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satisfies equations (3.17) and (3.18).
If equation (3.26) holds, by substituting it into equation (3.24) one obtains

C3 = − 4
9H3+ A3 (3.27)

whereA3 = C2. TheH3 is exactly the Hamiltonian equation (1.2).
Now let us verify that equation (3.17) is satisfied, for example, for [T

(3)
0 , T

(2)
0 ] = 0.

Equations (3.12) can be recasted to

T
(2)

0 = 1
2

∑′

i,j

(Pij − 1)− 2H2

and

H3 = 1
8

∑′

i,j,k

(wijwjkwki + wij + wjk + wki)(Pijk − 1)

respectively. In terms of equations (3.26) and (3.27),T
(3)

0 can be rewritten in the form:

T
(3)

0 = 1
6

∑′

i,j,k

wij (Pijk − 1)− 4
9H3− 1

2T
(1)

0 T
(2)

0 . (3.28)

In view of T (1)0 = C1, we obtain the simplified form of the LHS of equation (3.17):

[T (2)0 , T
(3)

0 ] = 1
12

[∑′

l,m

Plm,
∑′

i,j,k

wijPijk

]
− 2

9

[∑′

l,m

Plm,H3

]
+ 1

4C1

[∑′

l,m

Plm, T
(2)

0

]
− 1

3

[
H2,

∑′

i,j,k

wijPijk

]
+C1[H2, T

(2)
0 ] + 8

9[H2, H3]. (3.29)

Let us compute the RHS of the above expression.
Using

1
2

∑′

i,j

(Pij − 1) = 1
4(T

(1)
3 )

2+ 1
2(T

(1)
+ T

(1)
− + T (1)− T

(1)
+ )− 1

2

∑′

i,j

1

1
6

∑′

i,j,k

wij (Pijk − 1) = 1
2T

(1)
3 T

(2)
3 + T (1)+ T

(2)
− + T (1)− T

(2)
+

and equation (1.8) and the relationship betweenT
(2)

0 andH2, it is not difficult to prove that
the last five terms on the RHS of equation (3.29) vanish.

Next we only need to prove that the first term on the RHS of equation (3.29) is equal
to zero. On account of

PijPjk = 1
2(Pij + Pjk + Pki − 1)+ S3

i (S
+
j S
−
k − S−j S+k )+ S3

j (S
+
k S
−
i − S−k S+i )

+S3
k (S
+
i S
−
j − S−i S+j )

we obtain ∑′

i,j,k

wijPijk = 3
∑′

i,j,k

wijPijPjk = 6
∑′

i,j,k

(wij + wjk + wki)S3
i S
+
j S
−
k .

Hence

1
3

[∑′

l,m

Plm,
∑′

i,j,k

wijPijk

]
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= 4

{∑′

i,j,k,m

[(Pim + Pjm + Pkm), (wij + wjk + wki)S3
i S
+
j S
−
k ]

+
∑′

i,j,k

[(Pij + Pjk + Pki), (wij + wjk + wki)S3
i S
+
j S
−
k ]

}
.

The direct calculation shows that the first commutation vanishes because∑′

i,j,k,m

(wij + wjk + wki)

×(−S+i S−mS+j S−k + S−i S+j S−k S+m + 2S3
i S
+
j S

3
k S
−
m − 2S3

i S
3
j S
−
k S
+
m) = 0

where equations (2.16)–(2.18) have been used. Similarly, the second commutator also
vanishes, we thus verify that [T (3)0 , T

(2)
0 ] = 0.

Next let us prove equation (3.18). As an example, let us considerα = 3, i.e. one needs
to prove

[T (3)0 , T
(2)

3 ] = [T (2)0 , T
(3)

3 ]. (3.30)

On account of

T
(3)

3 = [T (2)+ , T
(2)
− ] + 1

2(T
(2)

0 T
(1)

3 − T (1)0 T
(2)

3 ) (3.31)

and substituting equations (3.26) and (3.31) into equation (3.30), then equation (3.30)
becomes

− 1
18

[∑′

i,j,k

wijwjkwki(Pijk − 1), T (2)3

]
= [T (2)0 , [T (2)+ , T

(2)
− ]] . (3.32)

Substituting equations (3.1), (3.5) and (3.6) into the RHS of equation (3.32) successively it
becomes:

RHS of (3.32) = [T (1)3 , [T (2)+ , T
(2)
− ]] + 2(T (2)+ T

(2)
− − T (2)− T

(2)
+ )+ [T (2)− , T

(2)
3 ]T (1)+

+[T (2)+ , T
(2)

3 ]T (1)− . (3.33)

Noting that

[T (2)+ , T
(2)
− ] =

∑′

i,j,k

wijwjkS
3
i (2S

3
j S

3
k + S+j S−k + S−j S+k )− 1

2

∑′

i,j

(wij )
2S3
j (3.34)

which leads to

[[T (2)+ , T
(2)
− ], T (1)3 ] = 0 (3.35)

hence, the first term of equation (3.33) vanishes. Further, using

[( 1
2T

(2)
3 T

(1)
3 + T (2)+ T

(1)
− + T (2)− T

(1)
+ ), T

(2)
3 ]

= [T (2)+ , T
(2)

3 ]T (1)− + [T (2)− , T
(2)

3 ]T (1)+ + 2(T (2)+ T
(2)
− − T (2)− T

(2)
+ )

we obtain

[T (2)0 , [T (2)+ , T
(2)
− ]] = [( 1

2T
(2)

3 T
(1)

3 + T (2)+ T
(1)
− + T (2)− T

(1)
+ ), T

(2)
3 ]. (3.36)

Making a comparison between equation (3.32) and equation (3.36) and taking the
expression for

∑′
i,j,k wij (Pijk − 1) into account we conclude that equation (3.18) is

identified with the requirement:

[( 1
18

∑′

i,j,k

wijwjkwki + 1
6

∑
i,j,k

wij )Pijk, T
(2)

3 ] = 0 (3.37)
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that is nothing but [H3, T
(2)

3 ] = 0. It was verified in [3, 5] forT (2)3 ∼ Q
(3)
1 . Of course,

(3.37) can also be directly checked. In the same manner, one finds that equation (3.18)
holds forα = ±, 3.

The other relations for equations (3.19) and (3.20) can be verified in a similar manner.

3.3. n = 4

The RTT relations are given by

[T (4)0 , T
(2)

0 ] = 0 (3.38)

[T (4)0 , T (2)α ] = [T (2)0 , T (4)α ] (α = ±, 3) (3.39)

[T (4)0 , T
(3)

0 ] = 0 (3.40)

[T (4)0 , T (m)α ] = [T (m)0 , T (4)α ] (α = ±, 3m = 2, 3) (3.41)

[T (4)0 , T (1)α ] = 0 (3.42)

together with equations (2.11) and (2.12) withn = 3. Using equations (2.2)–(2.10) for
n,m 6 3, we have

[T (2)0 , T
(m)
± ] = ±(T (1)3 T

(m)
± − T (m)3 T

(1)
± ) (3.43)

[T (2)0 , T
(m)

3 ] = 2(T (1)+ T
(m)
− − T (m)+ T

(1)
− ) (m = 3, 4) (3.44)

[T (1)+ , T
(m)
− ] = [T (m)+ , T

(1)
− ] = T (m)3 (3.45)

[T (1)3 , T
(m)
± ] = ±2T (m)± [T (m)3 , T

(1)
± ] = ±2T (m)± (3.46)

[T (2)− , T
(4)
+ ] = [T (4)− , T

(2)
+ ]. (3.47)

The relations shown by equations (3.43)–(3.47) are not concerned withT
(4)

0 . They
can be checked by making use of equations (2.11) and (2.12) and the knowledge of
sections 3.1 and 3.2. Therefore the key relations concerningT

(4)
0 that have to be checked

are equations (3.38)–(3.42).
Equation (1.25) takes the form:

C4 = T (4)0 + 1
2T

(2)
0 + 1

2(3C3− C2)+ 1
2(T

(1)
0 T

(3)
0 − T (1)3 T

(3)
3 )− (T (1)+ T

(3)
− + T (1)− T

(3)
+ )

+ 1
4[((T (2)0 )

2− (T (2)3 )
2
)− 2(T (2)+ T

(2)
− + T (2)− T

(2)
+ )]. (3.48)

We should find a suitableT (4)0 satisfying equations (3.38)–(3.42). The direct check is
very difficult. Since the point of this paper is to give a new interpretation of the H–S model
from the point of view of RTT relation, we can admit the derived results in [3–5] that will
simplify the following calculation a lot. Using the results forn = 2 andn = 3 after a
complicated calculation, equation (3.48) becomes

C4 = T (4)0 − 1
2

∑′

i,j,k,m

wijwjkPimPjk − 1
8

∑′

i,j,k,m

wijwkmPimPjk − 3
4(T

(2)
0 )

2

− 7
8

∑′

i,j,k

wijwjkPik + 1
2

∑′

i,j,k

(wij )
2Pik + AT (2)0 + B + T (1)0 T

(3)
0 (3.49)

whereA = N
2 − 1

2T
(1)

0 + C2− 3
4 andB = 11

8

∑′
i,j (wij )

2+ 1
2(3C3− C2)− 1

2C1(C3− C2).

We propose thatT (4)0 takes the form:

T
(4)

0 = − 1
32

∑′

i,j,k,m

(wijwjkwkmwmi + 1)(Pijkm − 1)
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+ 1
4

∑′

i,j,k,m

(wijwjkPikPjm − 1
2wijwkmPimPjk)

−
∑′

i,j,k

[ 1
8(2N − 11)wijwjk + 3

4(wij )
2]Pik − A′T (2)0 − T (1)0 T

(3)
0

− 1
2H

′′
4 − 3

4(T
(2)

0 )
2− 1

2H
′′′
4 (3.50)

where

A
′ = A− 1

2
= N

2
− 1

2
T
(1)

0 + C2− 5

4

H
′′
4 = −2

∑′

i,j

(
zizj

zij zji

)2

(Pij − 1)

H
′′′
4 = − 1

3H2.

If equation (3.50) is true, then we have:

C4 = 1
2H4+ A4 (3.51)

whereA4 = 2
∑′

i,j (wij )
2− 3

8N
∑′

i,j (wij )
2+ 1

2(3C3−C2)− 1
2C1(C3−C2) which is conserved,

andH4 takes the same form as that given in equation (1.3). Equation (3.13) means that

C2 = −2H2+ A2

= T (2)0 − 1
2{ 12T (1)3 T

(1)
3 + T (1)+ T

(1)
− + T (1)− T

(1)
+ } + 1

2{T (1)0 + 1
2(T

(1)
0 )

2}.
(3.52)

Therefore it holds

[H4, T
(2)

0 ] = 0 (3.53)

and combining equation (3.49) it leads to:

[C4, T
(2)

0 ] = 0. (3.54)

Similarly, after lengthy calculations we can check for theT (4)0 :

[Cn, T
(m)

0 ] = 0 (m, n = 2, 3, 4) (3.55)

hence

[Cn, T
(m)
α ] = 0 (m, n = 2, 3, 4). (3.56)

On the basis of knowledge of [3–5] in equations (1.8) and (1.9) we shall give the
verification of equations (3.38)–(3.42) for the proposedT (4)0 at the same level of the
validity discussed in [3]. Because the calculations are lengthy we only give a sketch of the
computation.

3.3.1. The verification of equation (3.38).Substituting [C4, T
(2)

0 ] into equation (3.48) and
using equations (3.21), (3.1) and (3.2) we have:

[T (4)0 , T
(2)

0 ] − {T (1)3 (T
(3)
+ T

(1)
− − T (1)+ T

(3)
− )+ T (1)+ (T

(1)
3 T

(3)
− − T (3)3 T

(1)
− )

+T (1)− (T
(3)

3 T
(1)
+ − T (1)3 T

(3)
+ )+ 1

2T
(2)

3 (T
(2)
+ T

(1)
− − T (1)+ T

(2)
− )

+ 1
2(T

(2)
+ T

(1)
− − T (2)+ T

(2)
− )T

(2)
3 + 1

2T
(2)
+ (T

(1)
3 T

(2)
− − T (2)3 T

(1)
− )

+ 1
2(T

(1)
3 T

(2)
− − T (2)3 T

(1)
− )T

(2)
+ + 1

2T
(2)
− (T

(2)
3 T

(1)
+ − T (1)3 T

(2)
+ )

+ 1
2(T

(2)
3 T

(1)
+ − T (1)3 T

(2)
+ )T

(2)
− } = 0.



5034 Zhou-Fei Wang et al

By a straightforward calculation on account of equations (2.1)–(2.12) forn = 2 we find
that the parenthesis in the above relation is equal to zero, thus one obtains:

[T (4)0 , T
(2)

0 ] = 0.

3.3.2. The verification of equation (3.39).From equations (3.54) and (3.46) it follows

[T (4)0 , T
(2)
+ ] + 1

2[T (2)0 , T
(2)
+ ] + 1

2T
(1)

0 [T (3)0 , T
(2)
+ ] − 1

2[T (1)3 , T
(2)
+ ]T (3)3 − 1

2T
(1)

3 [T (2)3 , T
(2)
+ ]

−T (1)+ [T (3)− , T
(2)
+ ] − [T (1)− , T

(2)
+ ]T (3)+ + 1

4T
(2)

0 [T (2)0 , T
(2)
+ ] + 1

4[T (2)0 , T
(2)
+ ]T (2)0

− 1
4T

(2)
3 [T (2)3 , T

(2)
+ ] − 1

4[T (2)3 , T
(2)
+ ]T (2)3 − 1

2T
(2)
+ [T (2)− , T

(2)
+ ]

− 1
2[T (2)− , T

(2)
+ ]T (2)+ = 0. (3.57)

Using equations (2.1)–(2.12) form 6 3 and n = 2, after straightforward calculation
equation (3.57) becomes:

[T (4)0 , T
(2)
+ ] + 1

2T
(1)

0 [T (2)0 , T
(3)
+ ] − 1

2T
(1)

3 [T (2)3 , T
(3)
+ ] − 1

2T
(1)

3 [T (2)3 , T
(3)
+ ]

−T (1)+ [T (2)− , T
(3)
+ ] + [T (2)3 , T

(3)
+ ] = 0. (3.58)

On the other hand, it holds

[T (2)0 , T
(4)
+ ] = [T (2)0 , 1

2[T (2)3 , T
(3)
+ ]] − 1

2T
(1)

0 [T (2)0 , T
(3)
+ ]

= T (1)+ [T (2)− , T
(3)
+ ] + T (2)+ [T (3)+ , T

(1)
− ] − 1

2T
(1)

0 [T (2)0 , T
(3)
+ ]

+ 1
2[T (2)3 , [T (2)0 , T

(3)
+ ]] . (3.59)

Using equations (3.42) and (3.44), equation (3.59) becomes:

[T (2)0 , T
(4)
+ ] = T (1)+ [T (2)− , T

(3)
+ ] + [T (2)+ , T

(3)
3 ] − 1

2T
(1)

0 [T (2)0 , T
(3)
+ ] + 1

2T
(1)

3 [T (2)3 , T
(3)
+ ]. (3.60)

Comparing equation (3.60) with equation (3.58) we obtain

[T (2)0 , T
(4)
+ ] = [T (4)0 , T

(2)
+ ]. (3.61)

In a similar manner we can prove:

[T (2)0 , T
(4)
− ] = [T (4)0 , T

(2)
− ] (3.62)

[T (2)0 , T
(4)

3 ] = [T (4)0 , T
(2)

3 ]. (3.63)

3.3.3. The verification of equation (3.40).From equations (3.24) and (3.53) it follows

[T (4)0 , T
(3)

0 ] = 1
2T

(1)
3 [T (4)0 , T

(2)
3 ] + T (1)+ [T (4)0 , T

(2)
− ] + T (1)− [T (4)0 , T

(2)
+ ]. (3.64)

Using equations (3.38), (3.62), (3.63) and (3.44) form = 4, equation (3.64) becomes:

[T (4)0 , T
(3)

0 ] = 2T (1)+ T
(4)
− + 2T (1)− T

(4)
+ + [T (1)+ , T

(1)
− ]T (4)3 − 2T (1)+ T

(4)
−

−2T (1)− T
(4)
+ + T (1)3 [T (1)− , T

(4)
+ ]

= T (1)3 T
(4)

3 − T (1)3 T
(4)

3 = 0. (3.65)
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3.3.4. The verification of equation (3.41) form = 3. By virtue of equations (3.24) and
(3.54) we obtain:

[T (3)0 , T
(4)
+ ] = 1

2[T (1)3 , T
(4)
+ ]T (2)3 + 1

2T
(1)

3 [T (2)3 , T
(4)
+ ] + T (1)+ [T (2)− , T

(4)
+ ] + [T (1)− , T

(4)
+ ]T (2)+

− 1
2T

(1)
0 [T (2)0 , T

(4)
+ ]

= T (4)+ T
(2)

3 + 1
2T

(1)
3 [T (2)3 , T

(4)
+ ] + T (1)+ [T (2)− , T

(4)
+ ] − T (4)3 T

(2)
+

− 1
2T

(1)
0 [T (2)0 , T

(4)
+ ] (3.66)

where [T (2)+ , T
(4)
+ ] = 0 has been used (this relation can be checked).

On the other hand,

[T (4)0 , T
(3)
+ ] = [T (4)0 , 1

2([T
(2)

3 , T
(2)
+ ] + T (2)0 T

(1)
+ − T (1)0 T

(2)
+ )]

= T (1)+ [T (4)− , T
(2)
+ ] + T (4)+ T

(2)
3 + 1

2T
(1)

3 [T (2)3 , T
(4)
+ ] − T (4)3 T

(2)
+

− 1
2T

(1)
0 [T (2)0 , T

(4)
+ ] (3.67)

where [T (4)0 , T
(2)
+ ] = [T (2)0 , T

(4)
+ ] has been used, which can be directly checked so that

[T (3)0 , T
(4)
+ ] − [T (4)0 , T

(3)
+ ] = T (1)+ [T (2)− , T

(4)
+ ] − T (1)+ [T (4)− , T

(2)
+ ]. (3.68)

Because of equations (3.38) and (3.47) one has:

[T (3)0 , T
(4)
+ ] = [T (4)0 , T

(3)
+ ]. (3.69)

In a similar way, we can prove:

[T (3)0 , T
(4)
− ] = [T (4)0 , T

(3)
− ] (3.70)

[T (3)0 , T
(4)

3 ] = [T (4)0 , T
(3)

3 ]. (3.71)

Finally, Equation (3.42) can be easily proved by using equation (3.48). Therefore
it has been verified that the proposedT (4)0 satisfies all the requirements by the relations
equations (3.38)–(3.42). Such aT (4)0 gives rise to

C4 = 1
2H4+ A4 (3.72)

whereA4 commutes with the Yangian and soH4 does at the level in [3].

4. Conclusion

As was pointed out in [3, 5], the Hamiltonian set of the H–S model (1.1)–(1.4) possesses
Yangian symmetry. In the above discussion we have shown that the spin-1

2 Hamiltonian

family can be derived from the RTT relation through the operatorsT
(n)

0 (26 n 6 4), namely,
theHn(n 6 4) are related to the quantum determinant of the transfer matrixCn. The set
Cn forms a conserved family, so doesT (n)0 . They commute with each other.T (n)0 do not
commute with the Yangian, but they are related to the Bethe ansatz approach following the
quantum inverse scattering methods in the diagonalization.

We start from equations (1.19) and (1.16) to find theCn (n 6 4) which are not
constants, because theT (n)0 cannot be expressed by theQα

0 andQα
1(α = ±, 3) themselves.

Rather, they are expressed in terms of the ‘more fundamental’ operatorsSαi which form the
Yangian. By virtue of equation (1.25)Cn are determined byT (n)0 and the Yangian operators
T (1)α , T (2)α (α = ±, 3). TheT (2)0 is constrained by the consistence between equations (2.11)
and (2.12) forn = 3 and equations (2.1)–(2.7). With suchT (2)0 the higher orderedT (n)0
(2 6 n 6 4) can be determined by satisfying equations (2.4)–(2.8). This process is quite
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like that made in discussing the long-ranged interaction model in [9]. With the obtained
T
(n)

0 the setCn can be found. The Hamiltonian family of the H–S model is thus formed
by Cn. Of course, the solutions forT (n)0 are sufficient. This approach may be viewed as
the generalization of the idea presented in [6]. It is general and dependent on the particular
realization ofT (2)0 . It is expected that new candidates will be found, then new models may
be constructed.
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